НАН РА. Математические вопросы кибернетики и вычислительной техники=Mathematical problems of computer science

About Complexity of FFT Algorithms for Length of q x 2p

Barseghyan, Rafayel V. (2017) About Complexity of FFT Algorithms for Length of q x 2p. Математические вопросы кибернетики и вычислительной техники, № 48. pp. 23-32. ISSN 0131-4645

[img] PDF
Download (369Kb)

    Abstract

    The paper presents logarithmic formula which allows to compute the exact number of necessary operations for computing the discrete Fourier transform (DFT) of an arbitrary q x 2p - length, where q is an odd integer.

    Item Type: Article
    Additional Information: q x 2p - երկարության ՖԱԶ-բարդության մասին / Ռ. Բարսեղյան: О сложности алгоритмов БПФ для длины q x 2p / Р. Барсегян
    Uncontrolled Keywords: Fast Fourier transform (FFT), Split-radix algorithm, Computational complexity.
    Subjects: Q Science > QA Mathematics > Algorithm
    Divisions: UNSPECIFIED
    Depositing User: FSL Bibl. Dept.
    Date Deposited: 10 Oct 2018 15:02
    Last Modified: 10 Oct 2018 15:02
    URI: http://compsci.asj-oa.am/id/eprint/880

    Actions (login required)

    View Item